Open Access Open Access  Restricted Access Subscription Access
Cover Image

A numerical stepwise approach for analysis of cavity expansion in strain-softening rock or soil mass

Feng Wang, Mingyao Xia, Jinfeng Zou

Abstract


This paper presents a numerical stepwise approach for analysis of cavity expansion in strain-softening rock or soil mass compatible with a linear Mohr–Coulomb or a generalized Hoek–Brown failure criterion. The conditions of the axisymmetric, plane strain and un-drained conditions are assumed for the cavity expansion problem. The initial in situ stress is assumed to be hydrostatic. In the presented approach, the plastic region is divided into a finite number of concentric rings whose thicknesses are determined internally to satisfy the equilibrium and compatibility equations, and the material parameters of the rock or soil mass are assumed to be the same in everyone ring. For the strain-softening behavior, it is assumed that all the strength parameters are a linear function of deviatoric plastic strain () for each rings. The increments of stress and strain for each rings are calculated with the finite difference method. The assumptions of the large strain for soil mass and the small strain for rock mass are adopted, respectively. Solutions of limited pressure and plastic radius are obtained by the numerical stepwise approach. Comparisons are conducted to validate the correctness of the proposed solution with Vesic’s solution (1975). Numerical examples are also carried out to highlight the influence of the strain-softening characteristic on the stress and displacement.

Keywords


cavity expansion, strain-softening, numerical stepwise approach, un-drained condition, rock or soil mass

Full Text:

PDF

References


Alonso E, Alejano LR, Varas F, Fdez-Manin G, Carranza-Torres C. Ground response curves for rock masses exhibiting strain-softening behavior. International journal for numerical and analytical methods in geomechanics, 2003, 27:1153–85, DOI: 10.1002/nag.315.

Cao L F, The C I. Undrained cavity expansion in modified Cam clay I: Theoretic analysis. Géotechnique, 2001, 51(4): 323-334, DOI: 10.1680/geot.51.4.323.39395.

Chen S L, Abousleiman Y N. Exact drained solution for cylindrical cavity expansion in modified Cam Clay soil. Géotechnique, 2012, 63(6): 510-517. DOI: 10.1680/geot.11.P.088.

Chen S L, Abousleiman Y N. Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil. Géotechnique, 2012, 62(5): 447-456. DOI: 10.1680/geot.11.P.027.

Carter J P, Booker J R, Yeung S K. Cavity expansion in cohesive frictional soils[J]. Géotechnique, 1985, 36(3): 349-358. DOI: 10.1680/geot.1986.36.3.349.

Carter J P, Yeung S K. Analysis of cylindrical cavity expansion in a strain weakening material. Computers and Geotechnics, 1985, 3(1): 161-180. DOI: 10.1016/0266-352X (85)90021-7.

Collins I F, Stimpson J R. Similarity solutions for drained and undrained cavity expansions in soils. Géotechnique, 1994, 44(1): 21-34. DOI: 10.1680/geot.1994.44.1.21.

Collins I F, Yu H S. Undrained cavity expansions in critical state soils. International journal for numerical and analytical methods in geomechanics, 1996, 20(7): 489-516. DOI: 10.1002/(S 363 ICI)1096-9853(199607)20:7<489::AID-NAG829>3.0.CO;2-V.

Lee Y K, Pietruszczak S. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass. Tunnelling and Underground Space Technology, 2008, 23(5): 588-599. DOI: 10.1016/j.tust.2007.11.002.

Park K H, Tontavanich B, Lee J G. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses. Tunnelling and Underground Space Technology, 2008, 23(2): 151-159. DOI: 10.1016/j.tust.2007.03.002.

Vesic A S. Expansion of cavities in infinite soil mass. Journal of Geotechnical Engineering, ASCE, 1972, 98(SM3): 265-290.

Wang S, Yin X, Tang H, et al. A new approach for analyzing circular tunnel in strain-softening rock masses. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 170-178. DOI: 10.1016/j.ijrmms.2009.02.011.

Wang S L, Yin S D, Wu Z J. Strain-softening analysis of a spherical cavity. International journal for numerical and analytical methods in geomechanics, 2012, 36:182-202. DOI: 10.1002/nag.1002.

Yang X L, Yin J H. Slope equivalent Mohr-Coulomb strength parameters for rock masses satisfying the Hoek-Brown criterion. Rock Mechanics and Rock Engineering, 2010, 39(4), 505-511. DOI: 10.1007/s00603-009-0044-2.

Yang X L, Zou J F. Cavity expansion analysis with non-linear failure criterion. Geotechnical Engineering, 2011, 164(1): 41-49. DOI: 10.1680/geot.2004.54.8.543.

Yu H S. Finite cavity expansion in dilation soils: loading analysis. Géotechnique, 1991, 41(2): 173-183. DOI: 10.1680/geot.1991.41.2.173.

Yu H S. Cavity expansion methods in geomechanics. 2000, London: Kluwer.

Zheng H, Liu D F, Lee C F, et al. Principle of analysis of brittle-plastic rock mass[J]. International journal of solids and structures, 2005, 42(1): 139-158. DOI: 10.1016/j.ijsolstr.2004.06.050.

Zhou H, Liu H, Kong G. Influence of shear stress on cylindrical cavity expansion in undrained elastic–perfectly plastic soil. Géotechnique Letters, 2014, 4(July-September): 203-210. DOI: 10.1680/geolett.14.00034.

Zhou H, Liu H, Kong G, et al. Analytical solution for pressure-controlled elliptical cavity expansion in elastic-perfectly plastic soil. Géotechnique Letters, 2014, 4(April-June): 72-78. DOI: 10.1680/geolett.14.00004.

Zhou H, Liu H L, Kong G Q, Huang X. Analytical solution of undrained cylindrical cavity expansion in saturated soil under anisotropic initial stress. Computers and Geotechnics, 2014, 55: 232-239. DOI: 10.1016/j.compgeo.2013.09.011.

Sharan SK. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek–Brown rock. Int J Rock Mech Min Sci, 2008, 45: 78–85. DOI: 10.1016/j.ijrmms.2007.03.002.

Zou J F, Li S S. Theoretical solution for displacement and stress in strain-softening surrounding rock under hydraulic–mechanical coupling. Science China Technological Sciences, 2015, 58(8): 1401-1413. DOI: 10.1007/s11431-015-5885-1.

Zou J F, Su Y. Theoretical solutions of a circular tunnel with the influence of the out-of-plane stress based on the generalized Hoek-Brown failure criterion. International Journal of Geomechanics (ASCE), 2015, DOI: 10.1061/(ASCE) GM.1943-5622.0000547.

Zou J F, Li S S, Xu Y, et al. Theoretical solution for a circular opening in an elastic-brittle-plastic rock mass incorporating the out-of-plane stress and seepage force. KSCE Journal of Engineering, 2015, 8: 1-15. DOI 10.1007/s12205-015-0789-y.


Refbacks

  • There are currently no refbacks.