Open Access Open Access  Restricted Access Subscription Access
Cover Image

Comparative Investigation of Benzotriazole and Humid Air Plasma on Corrosion Inhibition of Carbon Steel

Noureddine Ghali, Nadjat Mellak, Mehdi Adjdir, Ahmed Addou


Current research trends to focus on finding an alternative to the toxic 1H-BTA Benzotriazole for its corrosion inhibition properties on metal surfaces. Therefore, our study investigates the chemical properties of 1 H-BTA and simultaneously the gliding arc discharge (GAD) in humid air as a potential substitute. The inhibiting oxidation property of 1H-BTA benzotriazole on a carbon steel C75 sample in 0.5M NaCl has been compared to the oxidative properties obtained by exposing the same sample to GAD using weight loss measurement and electrochemical methods, e.g., electrochemical impedance spectroscopy (EIS), potentiodynamic polarization. The inhibition efficiency increases with 1H-BTA concentration to attain 75% at 10 mM. Polarization curves indicate that 1H-BTA acts as a mixed-type inhibitor. Inhibition efficiency values obtained from various methods were in good agreement. EIS measurements showed an increase of the transfer resistance with the inhibitor concentration. The adsorption of the inhibitor on the carbon steel surface in the NaCl solution was found to obey Langmuir’s adsorption isotherm and the adsorption free energy ∆Gads° has been deduced. The data obtained when treating carbon steel by GAD show similar behaviour with the formation of a passivating layer (barrier) on its surface. Data analysis reveal that 60 minutes plasma treatment have similar results with a concentration of 10 mM of 1H-BTA and an inhibition efficiency of the order of 75 %, which not only shows the importance of gliding arc discharge in surface treatment but also that discharges be used preferentially  to 1H-BTA benzotriazole.


Gliding arc discharge, Corrosion inhibition, Benzotriazole, Carbon steel.

Full Text:



Akiyama, C., Nobe, K., 1970. Electrochemical characteristics of iron in acidic solution containing ring-substituted benzoic acid. J. Electrochem. Soc. 117, 999-1003. DOI: 10.1149/1.2407746.

Ateya, B.G., El-Anadouli, B.E., El-Nizamy, F.M., 1984. The effect of thiourea on the corrosion kinetics of mild steel in H2SO4. Corros. Sci. 24,509-515. DOI:10.1016/0010-938X(84)90033-7.

Amar, H., Tounsi, A., Makayssi, A., Derja, A., Benzakour, J., Outzourhit, A., 2007. Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media. Corros. Sci. 49, 2936-45. DOI :10.1016/j.corsci.2007.01.010

Benstaali, B., Addou, A., Brisset, J.L., 2002. Electrochemical and X-ray investigation of austenitic 304L and 316L stainless steels treated by a gliding arc in humid air. Mat.Chem. Phys 78, 214-21. DOI:10.1016/S0254-0584(02)00229-8.

Bentiss, F., Lebrini, M., Lagrenee, M., Traisnel, M., Elfarouk, A., Vezin H., 2007. The influence of some new 2, 5-disubstituted 1, 3, 4-thiadiazoles on the corrosion behaviour of mild steel in 1M HCl solution: AC impedance study and theoretical approach. Electrochim. Acta. 52, 6865-72. DOI: 10.1016/j.electacta.2007.04.111.

Bentiss , F., Traisnel, M., Vezin, H., Lagrenée, M., 2000. Electrochemical Study of Substituted Triazoles Adsorption on Mild Steel. Ind. Eng. Chem. Res. 39, 3732-36. DOI: 10.1021/ie000043o.

Bertolini, L., Carsana, M., Gastaldi, M., Lollini, F., Redaelli, E., 2016. Corrosion of Steel in Concrete and Its Prevention in Aggressive Chloride-Bearing Environments. 5th International Conference on Durability of Concrete Structures.

Bilgic, S., Sahin, M., 2001. The corrosion inhibition of austenitic chromium–nickel steel in H2SO4 by 2-butyn-1-ol. Mater. Chem. Phys. 70, 290-95. DOI: 10.1016/S0254-0584(00)00534-4.

Brug, G.J., Van Den Eeden, A.L.G., Sluyters-Rehbach, M., Sluyters, J.H., 1984.The analysis of electrode impedances complicate by the presence of a constant phase element. J. Electroanal. Chem. 176, 275-95. DOI: 10.1016/S0022-0728(84)80324-1.

Cheng, X.L., Ma, H.Y., Yu, S.H., Chen, R., Chen, X., Yao, Z.M. 1998. Corrosion of stainless steels in acid solutions with organic sulfur-containing compounds. Corros. Sci. 41,321-33. DOI: 10.1016/S0010-938X(98)00125-5

Depenyou, Jr. F., Doubla, A., Laminsi, S., Moussa, D., Brisset, J.L., Le Breton, J.M., 2008. Corrosion resistance of AISI 1018 carbon steel in NaCl solution by plasma-chemical formation of a barrier layer. Corros. Sci. 50, 1422-32. DOI:10.1016/j.corsci.2007.12.011.

El Achouri, M., Kertit, S., Gouttaya, H.M., Nciri, B., Bensouda, Y., Perez, L., Infante, M.R., Elkacemi, K., 2001. Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide). Prog. Org. Coat. 43, 267-273. DOI: 10.1016/S0300-9440(01)00208-9.

EL -Warraky, A.A., El-Dahan, H. A., 2007. Corrosion inhibition of Al-bronze in acidified 4% NaCl solution. J. Mater. Sci. 32, 3693-3700. DOI: 10.1016/S0300-9440(01)00208-9.

Ghali, N., Addou, A., Mutel, B., Benstaali, B., Bentiss, F., Brisset, J.L., 2013. Corrosion inhibition of carbon steel in 0.5 M NaCl aqueous solution by humid air plasma treatment. Eur. Phys. J. Appl. Phys. 61, 30801-09. DOI:10.1051/epjap/2012120130.

Ghareba, S., Omanovic, S., 2010. Interaction of 1,2-aminododecanoic acid with a carbon steel surface: Towards the development of ‘green’ corrosion inhibitors. Corros. Sci. 52, 2104-13. DOI: 10.1016/j.corsci.2010.02.019.

Giger, W., Schaffner, C., Kohler, H.P.E., 2006. Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environ. Sci. Technol. 40, 7186-192. DOI:10.1021/es061565j.

Gil, P.M., Silva, G.N., Romo, M.R., Chavez, C.A., Pardave, M.P., 2004. Corrosion inhibition of pipeline steel grade API 5L X52 immersed in a 1 M H2SO4 aqueous solution using heterocyclic organic molecules. Electrochim. Acta. 49, 4733-41. DOI: 10.1016/j.electacta.2004.05.029.

Gomma, G.K., 1998. Corrosion inhibition of steel by benzotriazole in sulfuric acid. Mat. Chem. Phys. 55, 235-40.

Hackerman, N., 1962. Recent advances in the understanding of organic inhibitors. Corros. 18, 332-7. DOI:10.5006/0010-9312-18.9.332.

Hackerman, N., Sudbury, J.D., 1950. The effect of amines on the electrode potential of mild steel in tap water and acid solutions. J. Electrochem. Soc. 97, 109-16. DOI: 10.1149/1.2777977

Hart, D.S., Davis, L.C., Erickson, L.E., Callender, T.M., 2004. Sorption and partitioning parameters of benzotriazole compounds. Microchem. J. 77, 9-17. DOI:10.1016/j.microc.2003.08.005.

Hosseini, M.G., Ehteshamzadeh, M., Shahrabi, T., 2007. Protection of mild steel corrosion with Schiff bases in 0.5 M H2SO4 solution. Electrochim. Acta. 52,3680-85. DOI: 10.1016/j.electacta.2006.10.041.

Jüttner, K. 1990. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim. Acta, 35, 1501-08. DOI:10.1016/0013-4686(90)80004-8.

Khaled, K.F., Hackerman, N., 2004. Ortho-substituted anilines to inhibit copper corrosion in aerated 0.5 M hydrochloric acid. Electrochim. Acta. 49, 485-95. DOI: 10.1016/j.electacta.2003.09.005.

Kosec, T., Kek Merl, D., Milošev, I., 2008. Impedance and XPS study of benzotriazole films formed on copper, copper–zinc alloys and zinc in chloride solution. Corros. Sci. 50, 1987-97. DOI:10.1016/j.corsci.2008.04.016.

Labjar, N., Lebrini, M., Bentiss, F., Chihib, N., El Hajjaji, S., Jama, C., 2010. Corrosion inhibition of carbon steel and antibacterial properties of aminotris-(methylenephosphonic) acid. Mater. Chem. Phys. 119, 330-6. DOI:10.1016/j.matchemphys.2009.09.006.

McCafferty, E., Hackerman, N., 1972. Double layer capacitance of iron and corrosion inhibition with polymethylene diaminesJ. Electrochem. Soc. 119, 146-4. DOI: 10.1149/1.2404150.

Mennucci, M.M., Banczek, E.P., Rodrigues, P.R.P., Costa, I., 2009. Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution. Cem. Concr. Compos. 31, 418- 24. DOI: 10.1016/j.cemconcomp.2009.04.005.

Morad, M.S., Kamal El-Dean, A.M., 2006. 2,2′-Dithiobis(3-cyano-4,6-dimethylpyridine): A new class of acid corrosion inhibitors for mild steel. Corros. Sci. 48, 3398-3412. DOI: 10.1016/j.corsci.2005.12.006.

Mu, G., Li, X., Liu, G., 2005. Synergistic inhibition between tween 60 and NaCl on the corrosion of cold rolled steel in 0. 5 M sulfuric acid. Corros. Sci. 47, 1932-52. DOI: 10.1016/j.corsci.2004.09.020.

Muralidharan, S., Phani, K.L.N., Pitchumani, S., Ravichandran, S., Iyer, S.V.K., 1995. Polyamino‐benzoquinone polymers: a new class of corrosion inhibitors for mild steel. J. Electrochem. Soc. 142, 1478-83. DOI: 10.1149/1.2048599.

Pillard, D.A., Cornell, J.S., Dufresne, D.L., Hernandez, M.T., 2001. Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species. Water. Res. 35, 557-60. DOI:10.1016/s0043-1354(00)00268-2.

Quraishi, M.A., Sardar, R., 2003. Hector bases-a new class of heterocyclic corrosion inhibitors for mild steel in acid solutions,” Journal of Applied Electrochemistry, J. Appl. Electrochem. 33, 1163-68. DOI: 10.1023/B:JACH.0000003865.08986.fb.

Ravichandran, R., Nanjundan, S., Rajendran, N., 2004. Effect of benzotriazole derivatives on the corrosion of brass in NaCl solutions. Appl. Surf. Sci. 236, 241-50. DOI: 10.1016/j.apsusc.2004.04.025.

Reemtsma, T., Weiss, S., Mueller, J., Petrovic, M., Gonzalez, S., Barcelo, D., Ventura, F., Knepper, T.P., 2005. Polar pollutants entry into the water cycle by municipal wastewater;a European perspective. Environ. Sci. Technol. 40, 5451-8. DOI:10.1021/es060908a.

Sekine, I., Hirakawa, Y., 1986. Effect of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on the Corrosion of SS 41 Steel in 0.3% Sodium Chloride Solution. Corros. 42, 272-7. DOI:10.5006/1.3584904.

Song, Y., Jiang, G., Chen, Y., Zhao P., Tian Y., 2017. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific Reports 7.

Tang, L., Li, X., Lin, L., Mu, G., Liu, G., 2006. The effect of 1-(2-pyridylazo)-2-naphthol on the corrosion of cold rolled steel in acid media. Mater. Chem. Phys. 97, 301-7. DOI: 10.1016/j.matchemphys.2005.08.014.

Tebbji, K., Faska, N., Tounsi, A., Ouddad, H., Benkaddour, M., Hammouti, B., 2007. N-benzyl-N,N-bis[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]amine as corrosion inhibitor of steel in 1 M HCl. Mater. Chem. Phys. 106, 260-7. DOI: 10.1016/j.matlet.2006.05.063.

Tsuru, T., Haruyama, S., Gijutsu, B., 1978. Corrosion inhibition of iron by amphoteric surfactants in 2M HCl. J. Jpn. Soc. Corros. Eng. 27, 573-81.

Weiss, S., Jakobs, J., Reemtsma, T., 2006. Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. Environ. Sci. Technol 40, 7193-9. DOI:10.1021/es061434i.


  • There are currently no refbacks.